Vade Mecum Digital 2026De R$ 249,90 por 12x R$ 9,99 ou R$ 119,90 à vista
JurisHand AI Logo

Técnico Judiciário - Tecnologia da Informação - 2022


Página 6  •  Total 60 questões
30701Questão 51|Direito Processual Civil|médio

No que se refere à política de governança e gestão da Plataforma Digital do Poder Judiciário Brasileiro (PDPJ-Br), instituída pela Resolução CNJ n.º 335/2020, assinale a opção correta.

  • A

    Por questões relacionadas à segurança da informação, a PDPJ-Br não poderá ser hospedada em nuvem, somente em datacenters do próprio órgão.

  • B

    A política de governança e gestão da PDPJ-Br será coordenada pelo STF, contando, sempre que possível, com a participação de representantes do CNJ.

  • C

    Para que uma solução pública seja aceita na PDPJ-Br, a única exigência é que ela atenda aos requisitos estabelecidos na política de governança e gestão, não havendo necessidade de sua aprovação pela equipe técnica do CNJ.

  • D

    Caberá ao STJ definir e coordenar a força-tarefa para o desenvolvimento do portal, com interface nacional única para os usuários internos e externos.

  • E

    Padrões de documentos digitais e padrões de assinaturas digitais são requisitos para os dados e documentos estabelecidos pela política de governança e gestão da PDPJ-Br.

30702Questão 52|Direito Administrativo|médio

De acordo com a Portaria CNJ n.º 252/2020, prestar auxílio técnico aos tribunais, quando necessário, e supervisionar o desenvolvimento e sustentação do sistema, visando a garantir aderência entre as funcionalidades desenvolvidas e os requisitos definidos são atribuições

  • A

    do Departamento de Tecnologia da Informação e Comunicação do CNJ.

  • B

    da Comissão Permanente de Tecnologia da Informação e Infraestrutura.

  • C

    do Grupo Nacional de Gerenciamento, Desenvolvimento e Sustentação da PDPJ-Br.

  • D

    do Comitê Gestor Nacional.

  • E

    do Grupo Nacional de Requisitos de Negócio.

30703Questão 53|Direito Administrativo|médio

Segundo a Portaria CNJ n.º 131/2021, o Grupo Revisor de Código-Fonte é responsável pela análise das mudanças no código-fonte que forem sugeridas pela comunidade de desenvolvimento nas soluções disponibilizadas na PDPJ-Br e também no sistema PJe, e seus membros desempenharão as atividades em caráter honorífico. Com relação à composição desse grupo revisor, assinale a opção correta.

  • A

    As atividades desempenhadas pelos membros do grupo possuem caráter sigiloso, logo, não é permitida a participação de colaboradores eventuais nos projetos e reuniões.

  • B

    O grupo será composto por membros indicados pelo Departamento de Tecnologia da Informação e Comunicação do CNJ e por representantes indicados pelos tribunais.

  • C

    Os membros do grupo devem ser servidores efetivos e devem também possuir experiência ou formação na área de desenvolvimento de sistemas.

  • D

    A composição do Grupo Revisor de Código-Fonte somente poderá ser revista a cada dois anos.

  • E

    Os servidores lotados nos tribunais de Justiça estaduais e com mais de 10 anos de experiência na área de TI são considerados membros natos do Grupo Revisor de Código-Fonte.

30704Questão 54|Administração Geral|médio

Na biblioteca ITIL, o nível de serviço que busca transformar o gerenciamento de serviços em ativos estratégicos para atender aos objetivos da empresa é conhecido como

  • A

    desenho de serviço.

  • B

    melhoria continuada.

  • C

    transição de serviço.

  • D

    estratégia de serviço.

  • E

    operação de serviço.

30705Questão 55|Informática|médio

Gerenciamento de catálogo de serviços, gerenciamento de fornecedor e gerenciamento de capacidade são processos do nível de serviço da ITIL denominado

  • A

    transição de serviço.

  • B

    estratégia de serviço.

  • C

    melhoria continuada.

  • D

    operação de serviço.

  • E

    desenho de serviço.

30706Questão 56|Informática|médio

De acordo com o COBIT 5, o domínio alinhar, planejar e organizar (APO) inclui os processos

  • A

    gerenciar qualidade, gerenciar mudanças e gerenciar operações.

  • B

    gerenciar orçamento e custos, gerenciar fornecedores e gerenciar riscos.

  • C

    gerenciar portfólio, gerenciar mudanças e gerenciar problemas.

  • D

    gerenciar inovação, gerenciar operações e gerenciar problemas.

  • E

    gerenciar arquitetura da organização, gerenciar ativos e gerenciar portfólio.

30707Questão 57|Direito Administrativo|médio

Conforme a Resolução CNJ n.º 370/2021, as aquisições de bens e a contratação de serviços de tecnologia da informação e comunicação deverão atender às determinações do

  • A

    Conselho Nacional de Justiça.

  • B

    Conselho da Justiça Federal.

  • C

    Supremo Tribunal Federal.

  • D

    Superior Tribunal de Justiça.

  • E

    Superior Tribunal Militar.

30708Questão 58|Inglês|médio

Text 20A12-I

  As technology advances, the car industry has developed new ways to improve user experience. One of these ways includes using artificial intelligence to make cars self-driving. A self-driving car (also known as an autonomous car or driverless car) is a vehicle that uses a different number of sensors, radars, cameras, and artificial intelligence to travel to destinations without needing a human driver. Many companies have already started to manufacture self-driving cars, which are put through many tests to ensure they are eligible to be on the road without making any errors. To qualify as fully autonomous, a car must navigate routes to predetermined destinations without any human intervention.

  Artificial intelligence powers self-driving vehicle frameworks. Self-driving vehicle engineers utilize a great deal of information from image recognition systems, AI and neural networks to assemble frameworks that can drive self-sufficiently. The neural networks distinguish patterns in the data, which is fed to the AI calculations. That data include images from cameras for self-driving vehicles. The neural networks figure out how to recognize traffic lights, trees, pedestrians, road signs, and different parts of any random driving environment.

   As an example, Google has started to develop self-driving cars, which use a mix of sensors, light detectors, and other technology, like GPS and cameras. All the input data are combined and the artificial system predicts what those objects might do next. This whole process happens in a matter of milliseconds. Similar to any human driver, the more experience these systems gain, the better they become at driving. The more data it deals with in its deep learning algorithms, the more choices it will make and the faster those choices will be. 

Internet: <www.eescorporation.com> (adapted).

According to text 20A12-I,

  • A

    only with the advances in AI has the car industry been able to develop new ways to enhance user experience.

  • B

    another name for a self-driving car is an “autonomous car”, which is not the same as a “driverless car”.

  • C

    self-driving cars will only be made after they have been put through various tests.

  • D

    image recognition systems are the most important type of technology used to manufacture self-driving vehicles.

  • E

    a self-driving car can only be qualified as a fully autonomous vehicle after navigating routes without any human intervention.

30709Questão 59|Inglês|médio

Text 20A12-I

  As technology advances, the car industry has developed new ways to improve user experience. One of these ways includes using artificial intelligence to make cars self-driving. A self-driving car (also known as an autonomous car or driverless car) is a vehicle that uses a different number of sensors, radars, cameras, and artificial intelligence to travel to destinations without needing a human driver. Many companies have already started to manufacture self-driving cars, which are put through many tests to ensure they are eligible to be on the road without making any errors. To qualify as fully autonomous, a car must navigate routes to predetermined destinations without any human intervention.

  Artificial intelligence powers self-driving vehicle frameworks. Self-driving vehicle engineers utilize a great deal of information from image recognition systems, AI and neural networks to assemble frameworks that can drive self-sufficiently. The neural networks distinguish patterns in the data, which is fed to the AI calculations. That data include images from cameras for self-driving vehicles. The neural networks figure out how to recognize traffic lights, trees, pedestrians, road signs, and different parts of any random driving environment.

   As an example, Google has started to develop self-driving cars, which use a mix of sensors, light detectors, and other technology, like GPS and cameras. All the input data are combined and the artificial system predicts what those objects might do next. This whole process happens in a matter of milliseconds. Similar to any human driver, the more experience these systems gain, the better they become at driving. The more data it deals with in its deep learning algorithms, the more choices it will make and the faster those choices will be. 

Internet: <www.eescorporation.com> (adapted).

The main purpose of the second paragraph of text 20A12-I is to explain

  • A

    why AI is important to make autonomous cars more powerful.

  • B

    how self-driving cars work through artificial intelligence.

  • C

    how AI helps to recognize elements like traffic signs, trees, and any other random changes in the driving environment.

  • D

    what kinds of networks are used to feed the AI calculations.

  • E

    how crucial images captured by cameras are for autonomous vehicles.

30710Questão 60|Inglês|médio

Text 20A12-I

  As technology advances, the car industry has developed new ways to improve user experience. One of these ways includes using artificial intelligence to make cars self-driving. A self-driving car (also known as an autonomous car or driverless car) is a vehicle that uses a different number of sensors, radars, cameras, and artificial intelligence to travel to destinations without needing a human driver. Many companies have already started to manufacture self-driving cars, which are put through many tests to ensure they are eligible to be on the road without making any errors. To qualify as fully autonomous, a car must navigate routes to predetermined destinations without any human intervention.

  Artificial intelligence powers self-driving vehicle frameworks. Self-driving vehicle engineers utilize a great deal of information from image recognition systems, AI and neural networks to assemble frameworks that can drive self-sufficiently. The neural networks distinguish patterns in the data, which is fed to the AI calculations. That data include images from cameras for self-driving vehicles. The neural networks figure out how to recognize traffic lights, trees, pedestrians, road signs, and different parts of any random driving environment.

   As an example, Google has started to develop self-driving cars, which use a mix of sensors, light detectors, and other technology, like GPS and cameras. All the input data are combined and the artificial system predicts what those objects might do next. This whole process happens in a matter of milliseconds. Similar to any human driver, the more experience these systems gain, the better they become at driving. The more data it deals with in its deep learning algorithms, the more choices it will make and the faster those choices will be. 

Internet: <www.eescorporation.com> (adapted).

From the excerpt “The more data it deals with in its deep learning algorithms, the more choices it will make and the faster those choices will be” (last paragraph of text 20A12-I), it can be concluded that

  • A

    if a self-driving car deals with more data in its deep learning algorithms, it will make more but slower choices.

  • B

    the speed at which self-driving cars make choices is mostly affected by the number of dates on which these vehicles are put to use.

  • C

    the large amount of data available in deep learning algorithms can undermine the quality of the choices made by self-driving cars.

  • D

    self-driving cars will have more data in its deep learning algorithms if they make faster choices.

  • E

    the technology in self-driving cars will make more and faster choices as it deals with more data in its deep learning algorithms.

Técnico Judiciário - Tecnologia da Informação - 2022 | Prova